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Telephone-cord patterns have been recently observed in smectic liquid-crystal capillaries. We analyze the
effects that may induce them. As long as the capillary keeps its linear shape, we show that a nonzero chiral
cholesteric pitch favors the Sm-A* –Sm-C* transition. However, neither the cholesteric pitch nor the presence
of an intrinsic bending stress is able to give rise to a curved capillary shape. The key ingredient for the
telephone-cord instability is spontaneous polarization. The free-energy minimizer of a spontaneously polarized
Sm-A* phase is attained on a planar capillary, characterized by a nonzero curvature. More interestingly, in the
Sm-C* phase the combined effect of the molecular tilt and the spontaneous polarization pushes towards a
helicoidal capillary shape, with nonzero curvature and torsion.
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I. INTRODUCTION

Telephone-cord instabilities in carbon films have been
identified as processes which allow the material to relax its
residual stressf1g. Recently, similar helicoid fibers have been
observed in bent-shaped liquid crystalssthe so-calledbanana
liquid crystalsd f2,3g. Below a direct nematic–smectic-C*

transition temperature, tilted layered domains grow into the
isotropic phase by giving rise to thin helices of fixed diam-
eter and pitch, whose tips advance at a constant speed. A
central role in the peculiar domain shape choice appears to
be played by the spontaneous polarization, which character-
izes the banana moleculesf4g.

Although some nematics are polar liquidsf5,6g, the first
well-known liquid crystals exhibiting significant spontaneous
polarizations are found in the smectic-C* phase. In this
phase, the molecules are tilted with respect to the layer nor-
mal and thus break the mirror symmetryf7–9g. The local
polarization vector of a smectic liquid crystal is perpendicu-
lar to the director. However, it is free to rotate in the plane
orthogonal to it, thus giving a zero polarization average over
one pitch. The electro-optic effects of the Sm-C* phase
emerge with the unwinding of the helix by surface stabiliza-
tion and result in homogeneous spontaneous polarization
throughout the sample. These homogeneous director states
give rise to the ferroelectric Sm-C* phases. For a much more
detailed description of the role of polarization in liquid crys-
tals, we refer the reader to the book by Lagerwallf10g and,
more precisely, to Secs. 4.9–4.10, 5.4–5.6, 6.1–6.2, and
12.2–12.5 therein.

In this paper we analyze how polarization and chirality
may influence the ground-state shapes of thin filaments. The
experimental observations show that the smectic filaments
grow by increasing their length, rather than by thickening
their radius. Consequently, we will treat the filament radius

as a fixed parameter and focus our attention on the determi-
nation of the preferred filament shape.

Our main results deal with a smectic liquid crystal en-
dowed with a nonzero spontaneous polarization. In the
Sm-A* phase we find curved planar configurationssthe cap-
illary axis is bent with nonzero curvatured that have lower
energy than straight ones. More interestingly, in the Sm-C*

phase the ground-state configuration is helicoidal. We derive
analytical relations linking the radius and pitch of the
ground-state shapes to the material parameters. These rela-
tions allow us to estimate the tilt angle of the Sm-C* phase.
The main issue, stemming from experimental evidence on
telephone-cord instabilities and reflected in our results, is the
fact that the mechanism for the capillary to decrease its en-
ergy is by bending and twisting. For other geometries, the
mechanism for energy minimization may be the formation of
domainsf4,10g. However, domain formation is often coupled
with the creation of energetically expensive boundary de-
fects. The defect energy favors the changes in material ge-
ometry that we describe in our analysis.

The plan of the paper is as follows. In Sec. II we present
and discuss the model and free-energy functional. Section III
is devoted to linear capillary shapes: in it we show how a
nonzero cholesteric pitch may anticipate the Sm-A–Sm-C
transition. In Secs. IV and V we analyze the curved domains.
In the former we prove that neither the cholesteric pitch nor
the intrinsic bending stress is able to bend the axis of the
smectic capillary. In the latter we determine the curved
shapes induced by the spontaneous polarization. They turn
out to be planar or three dimensional, depending on the
Sm-A* –Sm-C* phase of the liquid crystal. In the concluding
section we discuss the above results and test them against the
experimental observations.

II. FREE-ENERGY FUNCTIONAL

We consider a liquid crystal occupying a curvilinear cyl-
inderV. The domain is thus the set of points which lie within
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a maximum distancer from a smooth curvec: f0,,g→R3 sto
be determinedd:

V = hP P R3:P = cssd + je,

for somesP f0,,g,j P f0,rg, ande ·e= 1j.

s2.1d

Figure 1 illustrates the geometry of the problem. We letN
andB be the normal and binormal unit vectors onc sthe unit
tangentT completes an orthogonal basisd and denote byk
and t the curvature and torsion along the same curve. We
recall that a curve characterized by constantsnonzerod values
of both curvature and torsion is necessarily a cylindrical he-
lix, whose radius and pitch are given by

rhel =
k

k2 + t2, phel = −
2pt

k2 + t2 . s2.2d

Given a pointPPV, the arclengthsP f0,,g identifies its
projection onc, while jP f0,rg yields its distance fromc.
Finally, qP f0,2pd is the angle that the unit vectore in Eq.
s2.1d determines withN. We show in the Appendix that the
coordinate setss,j ,qd is well defined as long asV is suffi-
ciently thin: r ,minsPf0,,gk

−1ssd.
According to the experimental conditions in which smec-

tic helices have been observedf2,3g, we consider a freely
suspended capillary, immersed in an isotropic fluid that does
not interact with the surface director. Thus, free-boundary
conditions will be imposed on both the nematic and smectic
variables. However, an anchoring energy will be necessary in
order to take into account the surface charges induced by
spontaneous polarization.

In the absence of nematic anchoring, there is no energy
gain for the system if the smectic and nematic variables de-
pend on the transverse coordinatesj ,q. We then assume
throughout our calculations that all fields depend only on the
arclengths. This will imply that the smectic layers are planes
orthogonal to the unit tangentT.

A. Nematic energy

We identify the director orientation through the angles
a ,w ssee Fig. 1d:

n = scosadT + ssina coswdN + ssina sinwdB. s2.3d

We also introduce the unit vectors

n' ª − ssinwdN + scoswdB, n3 ª − ssinadT

+ scosa coswdN + scosa sinwdB. s2.4d

Together with n, they complete another orthogonal basis
sn∧n3=n'; we arbitrarily definew=0 whena=0d. We have
ssee again the Appendix for technical detailsd

=n = Sa8 + k cosw

1 − kj cosq
n3 +

sw8 − tdsina − k cosa sinw

1 − kj cosq
n'D

^ T,

where a prime denotes differentiation with respect to the ar-
clengths. The Frank free energy density is thus given byf11g

sFfa,wg = K1sdiv nd2 + K2sn · curln + qchd2 + K3un ∧ curl n

+ v0u2 + sK2 + K4dftrs=nd2 − sdiv nd2g

=
sa8 + k coswd2

s1 − kj cosqd2sK1 sin2 a + K3 cos2 ad

+ K2Sqch −
sina

1 − kj cosq

3fsw8 − tdsina − k cosa sinwgD2

+ K3Sb0 sina

−
sw8 − tdsina − k cosa sinw

1 − kj cosq
cosaD2

,

where qch is the cholesteric pitch andv0=b0T∧n
=b0 sina n' is the intrinsic bending stress.

B. Smectic energy

Let cssd=rssdeivssd be the smectic order parameterf11g,
so that

=c =
sr8 + irv8deivssd

1 − kj cosq
T,

andT is also the normal to the smectic layers. The smectic
part of the free-energy density is given by

ssmfr,v,ag = Ciu = c − iqsmcnuin
2 + C'u = c − iqsmcnu'n

2

+ zsrd = CiF r82 cos2 a

s1 − kj cosqd2

+ r2S v8 cosa

1 − kj cosq
− qsmD2G

+
C'ssin2 adsr82 + r2v82d

s1 − kj cosqd2 + zsrd, s2.5d

where the subscriptin or 'n in Eq. s2.5d refers, respectively,

FIG. 1. Geometric setting of the model. The liquid crystal oc-
cupies a curvilinear cylinderV of width r, centered in the curvec.
The left panel illustrates the intrinsic framehT ,N ,Bj. In the right
enlargement we show a smectic liquid crystal, layered in the direc-
tion orthogonal to the unit tangentT. The nematic directorn is
identified through the anglesa ,w fsee Eq.s2.3dg.
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to the components parallel or orthogonal to the nematic di-
rectorn. The smectic pitch isqsm, while z is a scalar poten-
tial depending on the degree of smectic order.

The smectic energys2.5d does not rule out the possibility
of the elastic constantsCi ,C' being different. TheC' term
may be neglected when dealing with Sm-A materialsf12,13g,
but it is necessary to keep it in the free energy when tilted
phases come into play. The Sm-A phase may become un-
stable whenC',0 f14g, and in that case a higher-order term
should be included in the free energy to ensure the functional
to be positive definite. However, we do not need to insert
extra terms in the free energy, since we will prove that the
transition to a tilted phase can be induced by the cholesteric
pitch, even in the presence of a positiveC'. We remark that
the free-energy densitys2.5d remains positive definite even if
C' is negative, provideda is not too large. In fact,ssmù0
whenever

Ci cos2 a + C' sin2 a . 0,

i.e.,

C' ù 0 or tan2 a , −
Ci

C'

.

C. Spontaneous polarization

One important difference between polar smectics and sol-
ids is the freedom of the polarization vector to rotate in the
layer plane in the formersP is a Goldstone variabled as op-
posed to taking specific values determined by the solid lattice
f10,15,16g. Because of this vectorial symmetry, the energy
density of the fieldP contains, together with a term of the
form u=Pu2 which penalizes interfaces in the material, a term
proportional tosdiv Pd2,

spolfPg = Gu = Pu2 + G1sdiv Pd2 + GsuPud. s2.6d

In Eq. s2.6d, G denotes a scalar potential which determines
the polarization intensityuPu. When the permanent molecular
polarization is not sufficiently strong to self-interact, this
term avoids the onset of a spontaneous polarization. This is
why we will insert the potentials2.6d only in Sec. V, when
we will be dealing with spontaneously polarized materials.

A complete description of the polarization energy density
can be found in Ref.f17g. We remark that, in materials with
strong permanent polarization, theG1 term can also take the
different formsdiv P−c0d2, wherec0 can be either positive or
negative. This reflects the preference of the material for a
specific sign of the polarization. However, in the following
we will restrict our attention to the casec0=0. We also ne-
glect the nonlocal Coulombian interaction of the polarization
with the self-field.

D. Anchoring energy

The presence of a nonzero polarization induces a surface
charge in the capillary, which in turn requires an opposite
charge layer in the surrounding fluid. This boundary effect
can be taken into account through an effective anchoring
energy, which depends on the polarizationf18,19g:

sanchfPg = vPPs1 − p · nd,

whereP andp, respectively, denote the intensity and direc-
tion of the polarization vectorP, n is the outer normal at the
external surface, andvP is an effective anchoring strength.
The anchoring potential above may favor either homeotropic
or planar anchoring for the polarization vector, depending on
the sign ofvP.

III. LINEAR SHAPES

We first consider a linear smectic capillary in the absence
of spontaneous polarization. In this section we show that the
presence of a nonzero cholesteric pitch may induce a Sm
-A–Sm-C transition in the ground-state configuration, even
if C'.0.

Let k=t;0. The free-energy densitys=sF+ssm simpli-
fies to

sfa,w,r,vg = sK1 sin2 a + K3 cos2 ada82

+ K2sqch − w8 sin2 ad2

+ K3 sin2 asb0 − w8 cosad2

+ Cifr82 cos2 a + r2sv8 cosa − qsmd2g

+ C' sin2 asr82 + r2v82d + zsrd. s3.1d

The Euler-Lagrange equations associated with the free-
energy densitys3.1d, with respect to the variablesw and v,
can be easily integrated once to yield

]s

]w8
= c1,

]s

]v8
= c2,

with c1 and c2 constants along the capillary. The free-
boundary conditions requirec1=0 andc2=0, and thus

w8 ;
K2qch + K3b0 cosa

K2 sin2 a + K3 cos2 a
, v8 ;

Ciqsmcosa

Ci cos2 a + C' sin2 a
.

Furthermore, the free-energy densitys3.1d is minimized if
a8;0 and r8;0 swhich is allowed by the free-boundary
conditionsd. When these requirements are satisfied, the free-
energy density depends only on the constant values ofa and
r:

ssa0,r0d =
K2K3sqch cosa0 − b0 sin2 a0d2

K2 sin2 a0 + K3 cos2 a0

+
CiC'r0

2qsm
2 sin2 a0

Ci cos2 a0 + C' sin2 a0
+ zsr0d. s3.2d

The smectic-A phasesa0=0d is always associated to a sta-
tionary point of Eq.s3.2d. However, it becomes unstable
even whenC'.0, provided that

C'qsm
2 r0

2 ,
K2

K3
qchsK2qch + 2b0K3d. s3.3d

In fact,
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ssa0,r0d = ss0,r0d + SC'qsm
2 r0

2 −
K2qchsK2qch + 2b0K3d

K3
Da0

2

+ Osa0
4d asa0 → 0.

Figure 2 shows that, when conditions3.3d applies, the pre-
ferred angle moves continuously froma0=0. An exceptional
situation arises whenb0=0 andC'=Ci sbold plot of the right
paneld. In that case the optimal value ofa0 jumps from 0 to
p /2 when qch exceedsqsm. In all other cases, the Sm
-A–Sm-C transition induced by the cholesteric pitch is sec-
ond order.

IV. BENT DOMAINS

Let us now consider a general shape, withk, tÞ0, in the
absence of spontaneous polarization. In this section, we
prove that the combined effect of intrinsic bending stresses
and/or chirality do not induce shape transitions towards
curved domains.

The ground-state configuration of the free-energy density
sªsF+ssm is still characterized byr8;0 andv8;const. If
we further introduce the notations

Aª a8 + k cosw, K13ª K1 sin2 a + K3 cos2 a,

F ª sw8 − tdsina − k cosa sinw, K23ª K2 sin2 a

+ K3 cos2 a,

q1 ª
sK2qch + K3b0 cosadsina

K23
, q2

2
ª

K2qch
2 + K3b0

2 sin2 a

K23
,

C̃ª sCi cos2 a + C' sin2 adr0
2, Ã ª

Ci

C̃
r0

2qsmcosa,

A ª pr2, fsxd ª H2s1 −Î1 − x2d/x2 if x P s0,1g,

1 if x = 0,
J

the integration of the free-energy density over the transverse
coordinates yields

F = AE
0

,

dsffskrdsK13A
2 + K23F

2 + C̃v82d

− 2sK23q1F + C̃Ãv8d + K23q2
2 + Cir0

2qsm
2 g.

The Euler-Lagrange equation forv and the free-boundary
conditions yieldsv8;vopt8 =Ã / fskrd.

If we insert it in the free energy, we arrive at

F = AE
0

,

dsS fskrdsK13A
2 + K23F

2d − 2K23q1F + K23q2
2

−
C̃Ã2

fskrd
+ Cir0

2qsm
2 D .

The minimum value of this energy is obtained whenk=0. To
prove this assertion we notice thatf is monotonically
increasing.1 In particular, it is always greater thanfs0d=1.
Furthermore, it is possible to write the free energy functional
as:

F = AE
0

,

dsS fskrdK13A
2 + ffskrd − 1gK23F

2

+ C̃Ã2 fskrd − 1

fskrd
+ K23sF − q1d2

+
K2K3

K23
sqch cosa − b0 sin2 ad2

+
CiC'r0

2qsm
2 sin2 a

Ci cos2 a + C' sin2 a
D . s4.1d

All the terms depending on the curvaturefthat is, all terms
appearing in the first row of Eq.s4.1dg are minimized ifk
=0, and thus the ground-state shape ofV is linear. When this
is the case, the search for the energy minimizer may proceed
as in Sec. III.

V. POLARIZATION-INDUCED TRANSITIONS

We now focus attention on spontaneously polarized liquid
crystals. First, we insert in the free-energy functional the
termsspol and sanch introduced in Sec. II. Furthermore, the
intrinsic bending in theK3 term is to be replaced by a term
lP, proportional to the polarization vector. We will show that
these changes induce a spontaneous curvature in the shape of
a smectic-A* capillary and both a curvature and a torsion in a
smectic-C* capillary.

Telephone-cord instabilities have been observed in banana
liquid crystals. The microscopic shape of these molecules
gives rise to a spontaneous polarization vector which is al-
ways orthogonal to the director. The vectorP will thus be-
long to the plane determined by the unit vectorsn' ,n3, de-
fined in Eq. s2.4d. We identify it through the anglef as
follows:

P = Pp = Pfscosfdn' + ssinfdn3g.

A. Bent smectic-A* capillary

In a smectic-A phase the liquid-crystal molecules are or-
thogonal to the layers. We then leta;0, which implies

1The function f is monotonically increasing sincef8sxd=2s2−x2

−2Î1−x2d / sx3Î1−x2d.0 ∀ xP s0,1d

FIG. 2. a0
opt as a function ofqch/qsm when K2=K3=Cir0

2; C'

= 1
3Ci sleftd, C'= 2

3Ci scenterd, or C'=Ci srightd, and b0/qsm=0
sbold lined, 1

4, 1
2, 3

4, 1 sdotted lined.
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n = T, n' = B, n3 = N.

We assume that the potentialsz andG are strong enough to
fix the values ofr;const=r0 and P;constªP0¬l0/l,
wherel0 has the dimensions of an inverse length.2 In order
to simplify notations, we putzsr0d=GsP0d=0. Finally, we
defineGªGP0

2, having the dimensions of a nematic elastic
constant, and the dimensionless parameterg1ªG1/G.

The bulk free-energy densitysb=sF+ssm+spol now
reads as

sb = K2qch
2 + K3FSl0 −

k

1 − kj cosq
D2

+
2kl0s1 − sinfd

1 − kj cosq
G

+ Cir0
2S v8

1 − kj cosq
− qsmD2

+
Gfsf8 + td2 + s1 + g1dk2 sin2 fg

s1 − kj cosqd2 .

We remark that, in curved domains, the bend elastic term
pushes towards configurations where the spontaneous polar-
ization lies along the principal normal of the curve. Indeed,
the K3 term is minimized if sinf=1 which, together with
a=0, impliesP=P0N.

The anchoring energysanch is given by

sanch= vPP0f1 − sinsq + fdg.

If we integrate the free-energy density over the transverse
section of the curvec and then we substitute the equilibrium
value ofv8, we finally derive the free-energy density per unit
capillary length:

E sanchrs1 − kr cosqddq +E E sb
jdjdq

1 − kj cosq

= AF2vPP0

r
+ kvPP0 sinf + K2qch

2

+ K3fl0
2 − 2kl0 sinf + k2fskrdg + Cir0

2qsm
2 fskrd − 1

fskrd

+ Gfsf8 + td2 + s1 + g1dk2 sin2 fgfskrdG . s5.1d

To prove that the spontaneous polarization bends a smectic-
A* material, it suffices to find a curved configuration possess-
ing a smaller free energy than the linear one. We begin by
noticing that in the linear casesk=t=0d the free energy per
unit lengths5.1d is minimized whenf assumes any constant
value. When this is the case, the optimal value for the free
energy is

uFoptuk,t=0 = A,S2vPP0

r
+ K2qch

2 + K3l0
2D . s5.2d

We are looking for a configuration with a free energy lower
than Eq.s5.2d. To this aim, we focus on curves with constant
curvature and torsion. The free-energy density is minimized
if the polarization vector lies parallel or antiparallel to the
principal normalN, depending on whetherK3 is greater or
smaller thanvP/ s2ld. In the following, we assume thatK3

ùvP/ s2ld. In this case the minimization process requires
p=N si.e., f=p /2d. Nevertheless, the considerations below
would stand in the caseK3,vP/ s2ld, provided we choose
f=−p /2.

With the choice above, the free energy depends only on
the particular values chosen byk andt, and can be written as

Foptsk,td
A,

= A0 − 2A1kr + A2skrd2fskrd

−
A3

fskrd
+ Bfskrdstrd2,

where the signs are chosen in a way such thatB and allA’s
are positive:

A0 = K2qch
2 + K3l0

2 + Cir0
2qsm

2 + 2vPP0/r ,

A1 = SK3 −
vP

2l
Dl0

r
,

A2 = fK3 + Gs1 + g1dg/r2,

A3 = Cir0
2qsm

2 ,

B = G/r2.

The free energyFopt is clearly minimized whent=0 splane
curved. On the contrary, the minimum ofFopt is attained
when the curvature has a strictly positive value, since

Foptsk,0d
A,

= sA0 − A3d − 2A1kr

+ SA2 +
1

3
A3Dskrd2 + Oskrd4 askr → 0.

We remark thatFopt possesses a unique minimum as a func-
tion of k. Indeed, the conditions] /]kdFopt=0 is equivalent
to

A2f2skrdfskrd + skrd2f8skrdg +
A3f8skrd

f2skrd
= 2A1 s5.3d

and this equation has one and only one root, since the func-
tion on the left-hand side vanishes whenkr →0, is every-
where strictly increasing and diverges whenkr →1−. Let
xªkr. Equations5.3d can be written as

2xfsxd + x2f8sxd + j
f8sxd
f2sxd

=
l0

l0
* , s5.4d

with

2All the instabilities we find in this section hold also if we take
into account either nonuniformP,r, or spontaneous polarizations
not necessarily orthogonal to the director. However, we skip those
quite longer proofs to shorten our presentation.
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j ª
A3

A2
=

Cir0
2qsm

2 r2

K3 + Gs1 + g1d
, l0

*
ª

A2l0

2A1
=

K3 + Gs1 + g1d
s2K3 − vP/ldr

.

s5.5d

Figure 3 shows how the solutions of Eq.s5.4d depend onl0
swhich is proportional to the intensity of the spontaneous
polarizationd for three different values of the dimensionless
parameterj. In the absence of spontaneous polarization the
curvature is null. Then, it increases monotonically withl0.
When the spontaneous polarization makesl0 much greater
than its reference valuel0

* , the curvature approaches its
maximum allowed valuer−1. The curvature increases more
rapidly whenj is small—that is, in thinner capillaries.

B. Helicoidal smectic-C* capillary

In this final section we study how the spontaneous polar-
ization may induce a telephone-cord transition in a smectic-
C* capillary. We focus on a particular, even if quite common,
case. We assume that the smectic part of the free energy is
able to fix the opening angle of the smectic-C* cones to a
fixed value:a;a0. Furthermore, we assume that the spon-
taneous polarization of the liquid-crystal molecules deter-
mines a constant angle with respect to the principal normal
of the capillarysf;constd.

Even under the above simplifying assumptions, the bulk
free-energy density to be minimized is still quite cumber-
some to handle:

sb = ssmsa0d + K1
k2 cos2 w sin2 a0

s1 − kj cosqd2 + K2Sqch −
sina0

1 − kj cosq
fsw8 − tdsina0 − k cosa0 sinwgD2

+ K3FSl0 sinf −
k cosw cosa0

1 − kj cosq
D2

+ Sl0 cosf −
sw8 − tdsina0 − k cosa0 sinw

1 − kj cosq
cosa0D2G

+
G

s1 − kj cosqd2„hfsw8 − tdsina0 cosf + k cosw sinf − k cosa0 sinw cosfg2

+ fsw8 − tdcosa0 + k sina0 sinwg2j + g1h− fsw8 − tdsina0 cosf + k cosw sinf − k cosa0 sinw cosfgcosa0

+ fsw8 − tdcosa0 + k sina0 sinwgcosf sina0j2
…,

wheressm represents the smectic part, which fixes the value
of a0. The above expression simplifies if we introduce the
quantities xªhxi , i =1,2,3d, AªhAij : i , j =1,2,3j, bªhbi , i
=1,2,3d, andcPR, defined as

x1 ª
k cosw

1 − kj cosq
, x2 ª

sw8 − tdsina0 − k cosa0 sinw

1 − kj cosq
,

x3 ª
sw8 − tdcosa0 + k sina0 sinw

1 − kj cosq
,

A11ª K1 sin2 a0 + K3 cos2 a0 + Gs1 + g1 cos2 a0dsin2 f,

A22ª K2 sin2 a0 + K3 cos2 a0 + Gs1 + g1 cos2 a0dcos2 f,

A33ª Gs1 + g1 sin2 a0 cos2 fd,

A12 = A21ª Gs1 + g1 cos2 a0dsinf cosf,

A13 = A31ª − Gg1 sina0 cosa0 sinf cosf,

A23 = A32ª − Gg1 sina0 cosa0 cos2 f,

b1 ª K3l0 sinf cosa0, b2 ª K2qch sina0

+ K3l0 cosf cosa0, b3 ª 0,

cª ssmsa0d + K2qch
2 + K3l0

2

which allow us to write

sb = x ·Ax − 2b ·x + c.

FIG. 3. The preferred curvature of the axis of the smectic-A*

capillary increases with the spontaneous polarization. The inverse
lengthl0 is proportional touPu, and its reference valuel0

* is defined
in Eq. s5.5d. From top to bottom, the graphs correspond toj
=0,1,10.
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The scalar product between the polarization direction and
the outside normal to]V is

p · n = cosa0 sinf cossq − wd + cosf sinsq − wd.

Thus, the integration of the anchoring energy across the sec-
tion orthogonal to the axis of the capillary yields

E
0

2p

sanchrs1 − kr cosqddq

= Af2 + krscosa0 sinf cosw + cosf sinwdg
vPP0

r
.

We now specialize our study to the small-curvaturesor
thin- capillaryd regimekr !1. In this case we can neglect the
correction to 1 in the denominators of thexi’s, and the inte-
gration of the bulk free-energy density over the transverse
section simply corresponds to a multiplication byA. This
allows us to derive an analytic expression for the free-energy
minimizer. In fact, in this case the total free energy can be
written as

F
A,

= x ·Ax − 2b̃ ·x + c̃, s5.6d

provided we define theb̃i’s and c̃ as follows:

b̃1 ª SK3 −
vP

2l
Dl0 sinf cosa0,

b̃2 ª K2qch sina0 + SK3 −
vP

2l
Dl0 cosf cosa0,

b̃3 ª
vPP0

2
cosf sina0,

c̃ª ssmsa0d + K2qch
2 + K3l0

2 +
2vPP0

r
.

The functionals5.6d is minimized with respect to the pos-
sible values assumed by thexi’s when

x = xoptª A−1b̃. s5.7d

sThe symmetric matrixA is positive definite because of the
positivity of the elastic free energy density.d When this is the
case, the free energy takes the value

Fopt

A,
= c̃ − b̃ ·A−1b̃. s5.8d

Thexi’s obtained from Eq.s5.7d fix the constant values ofw,
k, andt. Indeed, in the thin-capillary limitkr !1, and set-
ting w8=0, the definition of thexi’s can be written as

xopt,1= k cosw,

xopt,2= − t sina0 − k cosa0 sinw,

xopt,3= − t cosa0 + k sina0 sinw,

which can be inverted to obtain

k = Îxopt,1
2 + sxopt,3sina0 − xopt,2cosa0d2,

t = − sxopt,2sina0 + xopt,3cosa0d,

w = arctan
xopt,3sina0 − xopt,2cosa0

xopt,1
.

However, at this stage,Fopt in Eq. s5.8d still depends on the
constant value attained byf, the angle that identifies the
polarization direction. Only the minimization ofFopt with
respect tof yields the complete description of the ground-
state configuration.

In order to illustrate the result of this minimization proce-
dure we conclude this section by analyzing in detail two
particular cases. In both of them the optimal shape of the
smectic capillary turns out to be a three-dimensional helix,
characterized by non-null values of both the curvature and
torsion of its axis.

1. One-constant approximation

Let us first consider the particular case in which

K1 = K2 = K3 = G = vP/l ¬ K, g1 = 0, s5.9d

while keeping the thin-capillary regimel0r !1. The optimal
shape of the capillary axis depends on the tilt anglea0 of the
smectic-C* molecules and on the cholesteric pitchqch. Figure
4 illustrates the results. The right panelsdisplaying the tor-
siond proves the three-dimensional character of the capillary
axis. The torsion is enhanced by the presence of a cholesteric
pitch. However, a nonzeroqch is not a necessary ingredient to
obtain three-dimensional shapes. In fact, if we addqch=0 to
Eq. s5.9d, we can derive an analytical expression for the op-
timal shape for all values ofa0:

ukoptuqch=0 =
u3 cos 2a0 − 1u

8
l0, utoptuqch=0 = −

3

8
sin 2a0l0.

s5.10d

On the contrary, the role played byl0 si.e., the spontaneous
polarizationd is crucial. The ratio between eitherk, t, andl0
is finite. Thus, bothk and t vanish whenl0 does so. This
observation is consistent with the results presented in Sec.
IV, where we have proved that the optimal capillary shape is
linear if the spontaneous polarization is null. Figure 4 is also

FIG. 4. Curvature and torsion of an optimal-shaped smectic-C*

capillary. The plots correspond to the valuesqch/l0

=0.1,0.5,1.0,1.5,2.

TELEPHONE-CORD INSTABILITIES IN THIN… PHYSICAL REVIEW E 71, 051701s2005d

051701-7



coherent with the result derived in Sec. V A for a smectic-A*

material: in the limita→0, the torsion vanishes while the
curvature does not. The radius and pitch of the helical shape
predicted by Eq.s5.10d are given by

urheluqch=0 =
4u3 cos 2a0 − 1u
5 − 3 cos 2a0

l0
−1,

upheluqch=0 =
24p sin 2a0

5 − 3 cos 2a0
l0

−1. s5.11d

The helix pitch vanishes whena0 vanishes, or it is equal to
p /2, that is, when the director is parallel or orthogonal to the
layer normal. In both cases, the equilibrium shape is a planar
circle. It attains its maximum value whena0= 1

2 arccos3
5

827°. The helix radius decreases whena0 increases, until it
vanishes at the critical valuea0= 1

2 arccos1
3 835°, where the

helix becomes a linear segment. Figure 5 pictures the un-
winding of the helix induced by the tilt anglea0.

2. Small tilt angle

Let us now analyze in more detail the small-a0 limit. If
the bend elastic constant prevails again over the effective
anchoringfK3ùvP/ s2ldg, we obtain

kopt =
K3 − vP/s2ld
K3 + Gs1 + g1d

l0 + Osa0d,

topt = −
K3

G
S1 −

K3 − vP/s2ld
K3 + Gs1 + g1dDl0a0 + Osa0

2d, asa0 → 0.

These results display the same qualitative features of the
one-constant solution analyzed above. The preferred curva-

ture becomes different from zero as soon as the spontaneous
polarization appears, even whena0 vanishes. On the con-
trary, the torsion vanishes when eitherl0 or a0 do so. How-
ever, a new and interesting result stems from the computa-
tion of the optimal free energy up toOsa2d. We obtain

Fopt

A,
= ssmsa0d + 3K3l0

2 −
SK3 −

vP

2l
D2

l0
2

K3 + Gs1 + g1d
+ K2qch

2 +
2vPl0

lr
4

−

2K2SK3 −
vP

2l
Dl0qcha0

K3 + Gs1 + g1d
+ Osa0

2d. s5.12d

The minus sign in front of the first-order term inFopt is
crucial. It implies that it is possible to decrease the free en-
ergy by tilting the director with respect to the layer normal.
This result holds even ifssmsa0d pushes towards the smectic-
A state, because in that casessm is minimum whena0=0, so
that it does not contribute to theOsa0d term we are discuss-
ing. The structure of the first-order term ina0 shows that this
instabilization of the smectic-A* phase is a combined effect
of both the spontaneous polarization and the cholesteric
pitch. Oncea0 becomes non-null, a nonzero value of the
torsion becomes preferred and the ground-state configuration
of the smectic-C* phase becomes helicoidal.

VI. DISCUSSION

A. Analytical results

The present theoretical study proves that telephone-cord
instabilities are to be expected in smectic-C* liquid crystals.
We have derived the ground-state configurations and the pre-
ferred shapes of a thin smectic capillary, possibly endowed
with spontaneous polarization. Having in mind the experi-
mental conditions in which these instabilities have been al-
ready observed, we have imposed free-boundary conditions
at the external surface of the capillary for both the nematic
and smectic variables. Nevertheless, a boundary energy has
been inserted in the free-energy functional to take into ac-
count polarization effects on the surrounding liquid.

As long as the spontaneous polarization is absent, the pre-
ferred capillary shape remains linear, as we prove in Sec. IV.
In this case, our analysissSec. IIId proves that a non-null
cholesteric pitch may induce a Sm-A–Sm-C transition, even
if the elastic constantC' is positive. Figure 2 shows how the
optimal value of the tilt anglea depends on the cholesteric
pitch for several different values of the elastic constants and
the intrinsic bending stress.

In Sec. V we have focused on spontaneously polarized
smectic liquid crystals. We have found evidence for possible
circular smectic-A* and helicoidal smectic-C* capillaries.
Figure 3 shows how the curvature of a smectic-A* capillary
is expected to increase with the spontaneous polarization.
Figure 4 displays both the curvature and the torsion as a
function of the tilt angle, for several different values of the
cholesteric pitchswhich, however, turns out to be not a key
ingredient in the telephone-cord transitiond.

FIG. 5. Equilibrium capillary shapes for an achiralsqch=0d
Sm-C*k, in the one-constant approximation. The plots correspond
to helices whose radius and pitch are given by Eq.s5.11d for several
values of the tilt anglea0. The base circle pictures the planar equi-
librium shape of a Sm-A* sa0=0d. As soon asa0.0, the circle
becomes a tightly wound helix. Whena0 increases, the helix opens.
The displayed shapes correspond toa0=0°, 5°, 10°, 15°, 20°, and
25°.
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In our opinion, the result derived in the final subsection,
Sec. V B 2, is particularly challenging. Equations5.12d
shows that even when the smectic part of the free-energy
functional pushes towards the smectic-A phase, it is possible
to save free energy by slightly tilting the nematic molecules
with respect to the layers. Once the molecules are tilted
sa0.0d, the preferred torsion becomes non-null, and a
telephone-cord instability originates. This effect arises from
a combined action of the spontaneous polarization and the
cholesteric pitch.

B. Comparison with experimental measurements

The analytical predictions above can be tested against the
experimental observations that inspired the present work.
More precisely, the geometry we have considered closely
matches the measurements carried out by the Kent and Halle
groups on 2-nitro-1-3-phenylene bisf20,2g. This compound
is achiral and undergoes a direct isotropic-B7 phase transition
at 177 °C. TheB7 phase is a tilted smectic phase, whose
detailed structure is still under studyf21,22g.

The comparison between our theoretical predictions and
the experimental observations of Ref.f2g allow to derive
some information on theB7 phase of the banana liquid crys-
tal compound. More precisely, from the helical parameters
we can estimate the tilting angle of the smectic phase and the
polarization-induced intrinsic bend. The experimental obser-
vations evidence a capillary of radiusr =0.85mm, which
forms a helix of radius rhel=2.25mm and pitch phel
=6.7 mm. In the absence of more precise information on the
elastic constants of the banana compound, we now assume
that the one-constant approximations5.9d holds, at least as a
first-order approximation. If this is the case and considering
that achirality impliesqch=0, Eqs.s5.11d provide an estimate
for both rhel and phel in terms of the tilt anglea0 and the
polarization-induced intrinsic bendl0. The inversion of these
equations leads to the estimates

a0 < 20 ° , l0 = lP0 < 1.93mm−1.

Note added in proof.Recently, we became aware of a
previous paper by Soneset al. f23g in which a related prob-
lem was analyzed. Inf23g, the polarization free-energy den-
sity s2.6d was neglected and, as a consequence, the polariza-
tion vector was allowed to develop a line disclination inside
the thin capillary. In that case, two instabilities can arise,
depending on the value of the cholesteric pitch: an helical
disclination may develop inside a straight capillary, or the
capillary itself may undergo a twisting transition.
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APPENDIX: CYLINDRICAL-CURVILINEAR
COORDINATES

Let V be the domain defined in Eq.s2.1d, hT ,N ,Bj the
intrinsic frame associated withc, and ss,j ,qd the coordi-
nates introduced in Eq.s2.1d. Let further ej ,eq be the unit
vectors defined as

ej ª cosqN + sinqB, eq ª − sinqN + cosqB.

When we follow the intrinsic unit vectors’ variation along a
curve(sstd ,jstd ,qstd) in V, the Frenet-Serret formulas imply

Ṫ=kṡN, Ṅ=−kṡT−tṡB, andḂ=tṡN, so that

ėj = sq̇ − tṡdeq − kṡcosqT, ėq = − sq̇ − tṡdej + kṡsinqT.

We thus obtain

Ṗ =
d

dt
fcssd + jejg = s1 − kj cosqdṡT + j̇ej + jsq̇ − tṡdeq.

For any differentiable real functionC :R3→R we have

=C =
C,s + tC,q

1 − kj cosq
T + C,jej +

C,q

j
eq,

where a comma denotes differentiation with respect to the
indicated variable. In particular, ifC depends only on the
arclengths,

=Cssd =
1

1 − kj cosq

dC

ds
T.

Furthermore,

=T =
k cosq

1 − kj cosq
ej ^ T −

k sinq

1 − kj cosq
eq ^ T,

=ej = −
k cosq

1 − kj cosq
T ^ T +

1

j
eq ^ eq,

=eq =
k sinq

1 − kj cosq
T ^ T −

1

j
ej ^ eq,

=B =
t

1 − kj cosq
N ^ T,

=N = −
k

1 − kj cosq
T ^ T −

t

1 − kj cosq
B ^ T.

The volume element in V is given by dv=ju1
−kj cosquds dj dq, so that the curvilinear coordinate sys-
tem ss,j ,qd is well defined as long asu1−kju.0, which
implieskssdr ,1 for all sP f0,,g, sincek is non-negative by
construction. The volume ofV is

VsVd =E
0

,

dsE
0

r

djE
0

2p

dqjs1 − kj cosqd = pr2,.
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